Spatio-temporal soil moisture patterns - a meta-analysis using plot to catchment scale data
This page lists all metadata that was entered for this dataset. Only registered users belonging to the C3 subproject may download this file.
Feature

Citation
Citation Options
Identification
Title: | Main Title: Spatio-temporal soil moisture patterns - a meta-analysis using plot to catchment scale data |
Description: | Abstract: Soil moisture is a key variable in hydrology, meteorology and agriculture. It is influenced by many factors, such as topography, soil properties, vegetation type, management, and meteorological conditions. The role of these factors in controlling the spatial patterns and temporal dynamics is often not well known. The aim of the current study is to analyze spatio-temporal soil moisture patterns acquired across a variety of land use types, on different spatial scales (plot to meso-scale catchment) and with different methods (point measurements, remote sensing, and modelling). We apply a uniform set of tools to determine method specific effects, as well as site and scale specific controlling factors. Spatial patterns of soil moisture and their temporal development were analyzed using nine different datasets from the Rur catchment in Western Germany. For all datasets we found negative linear relationships between the coefficient of variation and the mean soil moisture, indicating lower spatial variability at higher mean soil moisture. For a forest sub-catchment compared to cropped areas, the offset of this relationship was larger, with generally larger variability at similar mean soil moisture values. Using a geostatistical analysis of the soil moisture patterns we identified three groups of datasets with similar values for sill and range of the theoretical variogram: (i) modelled and measured datasets from the forest sub-catchment (patterns mainly influenced by soil properties and topography), (ii) remotely sensed datasets from the cropped part of the Rur catchment (patterns mainly influenced by the land-use structure of the cropped area), and (iii) modelled datasets from the cropped part of the Rur catchment (patterns mainly influenced by large scale variability of soil properties). A fractal analysis revealed that all analyzed soil moisture patterns showed a multifractal behavior, with at least one scale break and generally high fractal dimensions. Corresponding scale breaks were found between different datasets. The factors causing these scale breaks are consistent with the findings of the geostatistical analysis. Furthermore, the joined analysis of the different datasets showed that small differences in soil moisture dynamics, especially at the upper and lower bounds of soil moisture (at maximum porosity and wilting point of the soils) can have a large influence on the soil moisture patterns and their autocorrelation structure. Depending on the prevalent type of land use and the time of year, vegetation causes a decrease or an increase of spatial variability in the soil moisture pattern. |
Identifier: | 10.1016/j.jhydrol.2014.11.042 (DOI) |
Responsible Party
Creators: | Wolfgang Korres (Author), Tim G. Reichenau (Author), Peter Fiener (Author), Christian N. Koyama (Author), Heye Bogena (Author), Thomas Cornelissen (Author), Roland Baatz (Author), Michael Herbst (Author), Bernd Diekkrüger (Author), Harry Vereecken (Author), Karl Schneider (Author) |
Publisher: | Elsevier |
Publication Year: | 2014 |
Topic
TR32 Topic: | Soil |
Related Subprojects: | C3, B1, C1 |
Subjects: | Keywords: Soil Moisture, Pattern Analysis |
Geogr. Information Topic: | Environment |
File Details
Filename: | Korres et al. (2014, submitted to JoH).pdf |
Data Type: | Text - Article |
File Size: | 4.4 MB |
Date: | Submitted: 04.09.2014 |
Mime Type: | application/pdf |
Data Format: | |
Language: | English |
Status: | In Process |
Constraints
Download Permission: | Only Own Subproject |
General Access and Use Conditions: | According to the TR32DB data policy agreement. |
Access Limitations: | According to the TR32DB data policy agreement. |
Licence: | [TR32DB] Data policy agreement |
Geographic
Specific Information - Publication
Publication Status: | Submitted |
Review Status: | Not peer reviewed |
Publication Type: | Article |
Article Type: | Journal |
Source: | Journal of Hydrology |
Source Website: | https://www.sciencedirect.com/journal/journal-of-hydrology |
Volume: | 520 |
Number of Pages: | 16 (326 - 341) |
Metadata Details
Metadata Creator: | Sabrina Esch |
Metadata Created: | 05.09.2014 |
Metadata Last Updated: | 05.09.2014 |
Subproject: | C3 |
Funding Phase: | 2 |
Metadata Language: | English |
Metadata Version: | V50 |
Metadata Export
Metadata Schema: |
Dataset Statistics
Page Visits: | 1085 |
Metadata Downloads: | 0 |
Dataset Downloads: | 2 |
Dataset Activity
Feature

By downloading this dataset you accept the license terms of [TR32DB] Data policy agreement and TR32DB Data Protection Statement
Adequate reference when this dataset will be discussed or used in any publication or presentation is mandatory. In this case please contact the dataset creator.
Adequate reference when this dataset will be discussed or used in any publication or presentation is mandatory. In this case please contact the dataset creator.