Improved understanding of an extreme rainfall event at the Himalayan foothills - a case study using COSMO

This page lists all metadata that was entered for this dataset. You can download the dataset.

Feature
Citation
Citation Options
Identification
Title:Main Title: Improved understanding of an extreme rainfall event at the Himalayan foothills - a case study using COSMO
Description:Abstract: In recent years, an increased occurrence of loss and damage of property and human casualties over the southern rim area of the Himalayas, caused by landslides following intense rainfall events, has been reported. An analysis of Tropical Rainfall Measuring Mission (TRMM)-gridded rainfall data shows that events with an exceedance probability of 1.6% for 200 mm/d rainfall are common over this region during the monsoon season. An improved understanding of the mechanisms, which lead to such events, is important for their prediction and to estimate the impact of climate change on their recurrence. In this study, we analyse such an extreme precipitation event, which hit the Uttarakhand region of the central Himalayas on 13 September 2012. We use the operational regional weather forecast model COSMO at a convection-permitting resolution of 2.8 km to simulate this event. The spatial pattern of daily-accumulated precipitation and atmospheric state profiles simulated by the model compared well with the TRMM-gridded data and radiosonde observations, which adds confidence to our model results. Our analysis suggests a three-step mechanism leading to this event: (1) development of an easterly low-level wind along the Gangetic Plain caused by a low pressure system over the central Gangetic Plain; (2) convergence of moisture over the north-western part of India, leading to an increase of potential instability of the air mass along the valley recesses, which is capped by an inversion located above the ridgeline; and (3) strengthening of the north-westerly flow above the ridges, which supports the lifting of the potentially unstable air over the protruding ridge of the foothills of the Himalayas and triggers shallow convection, which on passing through adjacent folds initiates deep convection.
Identifier:10.3402/tellusa.v67.26031 (DOI)
Responsible Party
Creators:Prabhakar Shrestha (Author), Ashok PriyaDarshan Dimri (Author), Annika Schomburg (Author), Clemens Simmer (Author)
Publisher:AMS
Publication Year:2015
Topic
TR32 Topic:Atmosphere
Related Subproject:Z4
Subject:Keyword: Modelling
File Details
Filename:Shrestha_etal_2015.pdf
Data Type:Text - Article
File Size:4.7 MB
Date:Accepted: 28.04.2015
Mime Type:application/pdf
Language:English
Status:Completed
Constraints
Download Permission:Free
General Access and Use Conditions:According to the TR32DB data policy agreement.
Access Limitations:According to the TR32DB data policy agreement.
Licence:[TR32DB] Data policy agreement
Geographic
Specific Information - Publication
Publication Status:Published
Review Status:Peer reviewed
Publication Type:Article
Article Type:Journal
Source:Tellus A
Source Website:http://dx.doi.org/10.3402/tellusa.v67.26031
Issue:26031
Volume:67
Number of Pages:13 (1 - 13)
Metadata Details
Metadata Creator:Prabhakar Shrestha
Metadata Created:09.06.2015
Metadata Last Updated:09.06.2015
Subproject:Z4
Funding Phase:3
Metadata Language:English
Metadata Version:V50
Metadata Export
Metadata Schema:
Dataset Statistics
Page Visits:1190
Metadata Downloads:0
Dataset Downloads:8
Dataset Activity
Feature