Information content of incubation experiments for inverse estimation of pools in the rothamsted carbon model: A bayesian perspective

This page lists all metadata that was entered for this dataset. Only registered users of the TR32DB may download this file.

Feature
Request downloadRequest download
Full Name:
Affiliation:
eMail:
Purpose of use:
 
Bot check:
Type all characters with this
color
.
 
It is case sensitive.
 
 
 
Submit
Citation
Citation Options
Identification
Title:Main Title: Information content of incubation experiments for inverse estimation of pools in the rothamsted carbon model: A bayesian perspective
Description:Abstract: A major drawback of current soil organic carbon (SOC) models is that their conceptually defined pools do not necessarily correspond to measurable SOC fractions in real practice. This not only impairs our ability to rigorously evaluate SOC models but also makes it difficult to derive accurate initial states of the individual carbon pools. In this study, we tested the feasibility of inverse modelling for estimating pools in the Rothamsted carbon model (ROTHC) using mineralization rates observed during incubation experiments. This inverse approach may provide an alternative to existing SOC fractionation methods. To illustrate our approach, we used a time series of synthetically generated mineralization rates using the ROTHC model. We adopted a Bayesian approach using the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm to infer probability density functions of the various carbon pools at the start of incubation. The Kullback-Leibler divergence was used to quantify the information content of the mineralization rate data. Our results indicate that measured mineralization rates generally provided sufficient information to reliably estimate all carbon pools in the ROTHC model. The incubation time necessary to appropriately constrain all pools was about 900 days. The use of prior information on microbial biomass carbon significantly reduced the uncertainty of the initial carbon pools, decreasing the required incubation time to about 600 days. Simultaneous estimation of initial carbon pools and decomposition rate constants significantly increased the uncertainty of the carbon pools. This effect was most pronounced for the intermediate and slow pools. Altogether, our results demonstrate that it is particularly difficult to derive reasonable estimates of the humified organic matter pool and the inert organic matter pool from inverse modelling of mineralization rates observed during incubation experiments.
Identifier:10.5194/bg-7-763-2010 (DOI)
Responsible Party
Creators:Benedikt Scharnagl (Author), Jasper A. Vrugt (Author), Harry Vereecken (Author), Michael Herbst (Author)
Publisher:European Geosciences Union
Publication Year:2013
Topic
TR32 Topic:Soil
Related Subproject:B1
Subjects:Keywords: SOC, Inverse Parameter Estimation, Carbon Modelling
File Details
Filename:2010_Scharnagl_Biogeosciences.pdf
Data Type:Text - Article
Size:14 Pages
File Size:499 KB
Dates:Accepted: 23.02.2010
Issued: 25.02.2010
Mime Type:application/pdf
Data Format:PDF
Language:English
Status:Completed
Constraints
Download Permission:Only Project Members
General Access and Use Conditions:For internal use only
Access Limitations:For internal use only
Licence:[TR32DB] Data policy agreement
Geographic
Specific Information - Publication
Publication Status:Published
Review Status:Peer reviewed
Publication Type:Article
Article Type:Journal
Source:Biogeosciences
Source Website:www.biogeosciences.net
Volume:7
Number of Pages:14 (763 - 776)
Metadata Details
Metadata Creator:Benedikt Scharnagl
Metadata Created:02.12.2013
Metadata Last Updated:02.12.2013
Subproject:B1
Funding Phase:1
Metadata Language:English
Metadata Version:V50
Metadata Export
Metadata Schema:
Dataset Statistics
Page Visits:904
Metadata Downloads:0
Dataset Downloads:0
Dataset Activity
Feature
A download is not possibleDownload